Using Text Similarity to Detect Social Interactions not Captured by Formal Reply Mechanisms

Samuel Barbosa, Roberto M. Cesar-Jr
Institute of Mathematics and Statistics
University of São Paulo, Brazil
{sam,cesar}@ime.usp.br

Dan Cosley
Department of Information Science
Cornell University
danco@cs.cornell.edu
Users’ reactions
Using Text Similarity to Detect Social Interactions not Captured by Formal Reply Mechanisms

• Common prediction task: is this particular user going to reply to this message?
 • A dual problem: this user created a message. Is it a reaction to some received message?

• Users might generate content as reaction to received messages
 • Reply mechanisms help to capture part of these reactions
 • Twitter Replies and Retweets and Facebook Likes and Shares
 • What are we missing?

• Research questions
 • Do explicit responses in fact tend to have high text similarity?
 • What is the potential of text similarity to find non-explicit responses?
 • What is the nature of the reactions captured by text similarity?
 • Are many users “invisible” because they do not use formal replies mechanisms but still react to the content they see?
The Proposed Approach

Using Text Similarity to Detect Social Interactions not Captured by Formal Reply Mechanisms

1. Reconstruct the ego-user’s timeline at the moment he generated each of his messages
 • Ego-networks are suitable since they encompass all messages a user send and receive
 • Easy to be done in reverse-chronological ordered timelines
2. Look in the ego-user’s timeline for similar messages to the one that was generated
 • A normalized version of Tf-Idf scoring

• Our data
 • 449 Twitter users’ ego-networks, including the messages generate by each user
 • The dataset was crawled in the first three weeks of December, 2012, users are Obama’s followers originally crawled for a diffusion study on the presidential campaign
 • Filtered users that:
 • did not choose English as their profile language
 • did not posted in the last month previous to the crawling
 • the followee crawling did not provide at least 80% of overlapping activity
Timeline reconstruction
Using Text Similarity to Detect Social Interactions not Captured by Formal Reply Mechanisms

- One window for each message
- For messages that are Replies, 80%+ of the messages they reply to are in the last 100 tweets (Comarela et al.)

<table>
<thead>
<tr>
<th>Replies</th>
<th>4192</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replies in windows</td>
<td>3455</td>
</tr>
</tbody>
</table>
Similarity Evaluation

Using Text Similarity to Detect Social Interactions not Captured by Formal Reply Mechanisms

- Tf-idf transformation on the union of all the windows of one user
- Each message is used as a query to search in the associated rows in the final matrix
- The result is normalized by the largest possible score for a given window, i.e., the largest row sum for each window

\[\text{Set } D \text{ of all windows' tweets without repetition.} \]

\[\text{Generate tf-idf matrix.} \]

\[\text{Evaluate the score in the window } w_i. \text{ Normalize by the largest row sum in } w_i. \]

\[\text{We use the user's tweet as a query to search in the window's tweets for the most relevant document.} \]

\[t_i \]
Looking for missed reactions
Using Text Similarity to Detect Social Interactions not Captured by Formal Reply Mechanisms

Do explicit responses in fact tend to have high text similarity?

Considering a conservative cutoff

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
<th>Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Tagged</td>
<td>0.135</td>
<td>0.102</td>
<td>0.136</td>
</tr>
<tr>
<td>Replies</td>
<td>0.212</td>
<td>0.200</td>
<td>0.092</td>
</tr>
<tr>
<td>Retweets</td>
<td>0.384</td>
<td>0.287</td>
<td>0.282</td>
</tr>
</tbody>
</table>

What is the potential of text similarity to find non-explicit responses?

<table>
<thead>
<tr>
<th></th>
<th>Non-Tagged</th>
<th>Replies</th>
<th>Retweets</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Scored (score ≥ 0.384)</td>
<td>998</td>
<td>177</td>
<td>2408</td>
</tr>
<tr>
<td>Total</td>
<td>16650</td>
<td>4192</td>
<td>5209</td>
</tr>
</tbody>
</table>

11%
What is the nature of these reactions?

Using Text Similarity to Detect Social Interactions not Captured by Formal Reply Mechanisms

Retweets
- High scored presents the same content
- Score drops with the size, even with the same content
- Low scored have the RT marker but weren’t found in windows

Replies
- High scored look like retweets or multiple mentions in a conversation
- @-mentions seem to be the main evidence for similarity

Non-Tagged
- High scored look like retweets
- Users may be independently retweeting the same content
- Usually have small comments
- As the score goes down, looks less like a retweet, but often topically related, e.g., same hashtags

Serrae: @MollytheGhost @PhantomRat @hollye83 @hockeybychoice @onlymystory @sjopierce @phouse1964 Hate them.

hollye83: @hockeybychoice @onlymystory @PhantomRat @sjopierce @phouse1964 @MollytheGhost @Serrae Hateful. Just hateful.

Zac_Hartlage14: @BadJerry20 OKC traded James Harden

24_Jag: Why WOULD OKC TRADE JAMES HARDEN????

DavidAmejia: RT @Snoopy: It’s Monday, Snoopy! http://t.co/asOF9yPA

AshKetchum151: Mondays are like Zubats. Nobody likes Zubats.
The users we are missing
Using Text Similarity to Detect Social Interactions not Captured by Formal Reply Mechanisms

- 149 out of 449 (29%) users generated high scoring non-tagged messages
- There are users who consistently generate high scored messages belonging to all ranges of level of activity
More on how we are missing users
Using Text Similarity to Detect Social Interactions not Captured by Formal Reply Mechanisms

- 6% of the users generated more high scored messages than formal replies
- 24% of the users did not use formal reply mechanisms nor generated high scored messages
- 8% of the users had a high score attributed to at least 10% of their messages
- 71% of the users only used formal reply mechanisms with no high scored messages

High Scored Non-Tagged %
Tagged %

Users' high Non-Tagged Pct CDF
High Scored Non-Tagged %

Science 2015
Samuel Barbosa, Roberto M. Cesar-Jr, Dan...
Wrapping it up
Using Text Similarity to Detect Social Interactions not Captured by Formal Reply Mechanisms

• Considering a conservative cutoff
 • Possibly missing up to 11% of reactions
 • Seriously underrepresenting up to 6% of the users

• What are we missing?
 • Users that for some reason don’t use the formal mechanisms
 • Users are sharing an external context outside of the social network
 • Interactions not fully characterized by the existing mechanisms, e.g., group conversations

• But the method is not perfect
 • Underevaluate replies
 • Sensitive to retweet size
 • Reactions due to content outside the timeline are not captured
Next Steps
Using Text Similarity to Detect Social Interactions not Captured by Formal Reply Mechanisms

• Improve the scoring function
 • Normalizing by the maximum score for the document
 • Mixture between maximum scoring term and tf-idf score

• Improve the model considering other features, e.g., network characteristics, social media metadata
Using Text Similarity to Detect Social Interactions not Captured by Formal Reply Mechanisms

Acknowledgements

FAPESP grant #2011/50761-2
CAPES grant #99999.009323/2014-07
NSF grant 1422484

Samuel Barbosa
IME – USP - Brazil
sam@ime.usp.br